RumusCos Ab Wednesday, 31 December 1969 Dan persamaan ini tidak dapat diselesaiakan jika. Cosa b cos a cos b sin a sin b 3.
Ilustrasirumus perkalian sinus dan cosinus, sumber foto Roman Mager on Unsplash. ADVERTISEMENT. Jika Anda belajar matematika mungkin sudah tidak asing lagi dengan materi mengenai sinus dan cosinus. Biasanya untuk mempermudah siswa dalam mempelajari materi mengenai sinus dan cosinus menggunakan bantuan dari tabel trigonometri. Selain itu untuk
TugasMatematika Peminatan Kelas 11Hanin Alifia Rahma 11 MIPA 4 / 16
Rumustangen sudut ganda. Dengan menggunakan rumus sin a b untuk a b maka diperoleh. Cos a b cos a cos b sin a sin b rumus cosinus selisih dua sudut. Jawab cos 2x 1 2 cos 2x cos 60. Rumus sudut ganda untuk sin 1 2. Tan x tan α maka x α k 180. Rumus tangen jumlah dan selisih dua sudut. Ketika terdapat bentuk persamaan a cos 2 x b sin x cos x c
Sedangkanpanjang BC dapat dihitung dengan rumus aturan cosinus karena diketahui satu panjang sisi dan besar dua sudut segitiga. Menghitung panjang BC: BC 2 = AC 2 + AB 2 ‒ 2 × AC × AC × cos A BC 2 = (5√2) 2 + (10√2) 2 ‒ 2 × 5√2 × 10√2 × ½ BC 2 = 50 + 200 ‒ 200 × ½ BC 2 = 50 + 200 ‒ 100 BC 2 = 150 BC = √150 = √ (25×6) = √25 × √6) = 5√6 cm
Meilleur Site De Rencontre Gratuit En France. - Rumus-Rumus Trigonometri Penjumlahan Sinus Cosinus Tangen Rumus Trigonometri Penjumlahan Dua Sudut 1. Rumus Cosinus Penjumlahan Sudut Perhatikanlah gambar di bawah ini. Dari lingkaran yang berpusat di O0, 0 dan berjari-jari 1 satuan misalnya, Dengan mengingat kembali tentang koordinat Cartesius, maka a. koordinat titik A 1, 0 b. koordinat titik B cos A, sin A c. koordinat titik C {cos A + B, sin A + B} d. koordinat titik D {cos –B, sin –B} atau cos B, –sin B AC = BD maka AC2 + DB2 {cos A + B – 1}2 + {sin A + B – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2 cos2 A + B – 2 cos A + B + 1 + sin2 A + B = cos2 B – 2 cos B cos A + cos2 A + sin2 B + 2 sin B sin A + sin2 A 2 – 2 cos A + B = 2 – 2 cos A cos B + 2 sin A sin B 2 cos A + B = 2 cos A cos B – sin A sin B cos A + B = cos A cos B – sin A sin B Maka didapat Rumus Cosinus Penjumlahan dua sudut cos A + B = cos A cos B – sin A sin B Dengan cara yang sama, maka cos A – B = cos A + –B cos A – B = cos A cos –B – sin A sin –B cos A – B = cos A cos B + sin A sin B Rumus Cosinus Selisih dua sudut cos A – B = cos A cos B + sin A sin B Untuk lebih paham tentang penggunaan rumus cosinus jumlah dan selisih dua sudut, silakan anda pelajari contoh soal berikut. Contoh soal Penjumlahan sudut Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos A + B dan cos A – B. Penyelesaian cos A = 5/13 , maka sin A = 12/13 sin B = 24/25 , maka cos B = 7/25 cos A + B = cos A⋅ cos B – sin A⋅ sin B = 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25 = 35/325 − 288/325 = − 253/325 cos A – B = cos A⋅ cos B + sin A⋅ sin B = 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25 = 35/325 + 288/325 = 323/325 2. Rumus Sinus Penjumlahan Dua Sudut Perhatikan rumus berikut ini. Maka rumus sinus jumlah dua sudut Dengan cara yang sama, maka sin A – B = sin {A + –B} = sin A cos –B + cos A sin –B = sin A cos B – cos A sin B Rumus sinus selisih dua sudut sin A – B = sin A cos B – cos A sin B Perhatikan contoh soal berikut ini untuk memahami tentang penggunaan rumus sinus jumlah dan selisih dua sudut. Contoh soal Diketahui cos A = – 4/5 dan sin B = 5/13 , sudut A dan B tumpul. Hitunglah sin A + B dan sin A – B. Penyelesaian cos A = – 4/5 , maka sin A = 3/5 kuadran II sin B = 5/13 , maka cos B = – 12/13 kuadran II sin A + B = sin A cos B + cos A sin B = 3/5 . –12/13 + –4/5 . 5/13 = –36/65 – 20/65 = – 56/65 sin A – B = sin A cos B – cos A sin B = 3/5 . –12/13 – –4/5 . 5/13 = –36/65 + 20/65 = – 16/65 3. Rumus Tangen Penjumlahan Dua Sudut Rumus tangen jumlah dua sudut Pelajarilah contoh soal berikut agar kamu memahami penggunaan rumus tangen jumlah dan selisih dua sudut. Tanpa menggunakan tabel logaritma atau kalkulator, hitunglah tan 105°. Penyelesaian tan 105° = tan 60 + 45° = tan 60° tan 45° 1 tan60 tan45 Demikianlah postingan tentang rumus penjumlahan trigonometri sinus, cosinus, tangen yang bisa saya bagikan. Silakan dipelajari dan semoga ada manfaatnya. Salam.
Sin A + Sin B, an important identity in trigonometry, is used to find the sum of values of sine function for angles A and B. It is one of the sum to product formulas used to represent the sum of sine function for angles A and B into their product form. The result for sin A + sin B is given as 2 sin ½ A + B cos ½ A - B. Let us understand the sin A + sin B formula and its proof in detail using solved examples. 1. What is Sin A + Sin B Identity in Trigonometry? 2. Sin A + Sin B Sum to Product Formula 3. Proof of Sin A + Sin B Formula 4. How to Apply Sin A + Sin B? 5. FAQs on Sin A + Sin B What is SinA + SinB Identity in Trigonometry? The trigonometric identity sinA + sinB is used to represent the sum of sine of angles A and B, sin A + sin B in the product form using the compound angles A + B and A - B. It says sin A + sin B = 2 sin [A + B/2] cWe will study the sin A + sin B formula in detail in the following sections. Sin A + Sin B Sum to Product Formula The sin A + sin B sum to product formula in trigonometry for angles A and B is given as, Sin A + Sin B = 2 sin [½ A + B] cos [½ A - B] Here, A and B are angles, and A + B and A - B are their compound angles. Proof of SinA + SinB Formula We can give the proof of sin A + sin B formula sin A + sin B = 2 sin ½ A + B cos ½ A - B using the expansion of sinA + B and sinA - B formula. We know, using trigonometric identities, ½ [sinα + β + sinα - β] = sin α cos β, for any angles α and β. From this, [sinα + β + sinα - β] = 2 sin α cos β ... 1 Let us assume that α + β = A and α - β = B. ⇒ 2α = A + B ⇒ α = A + B/2 ⇒ 2β = A - B ⇒ β = A - B/2 Substituting all these values in 1 ⇒ sinA + sinB = 2 sin ½A + B cos ½A - B Hence, proved. How to Apply Sin A + Sin B? We can apply the sin A + sin B formula as a sum to the product identity. Let us understand its application using an example of sin 60º + sin 30º. We will solve the value of the given expression by 2 methods, using the formula and by directly applying the values, and compare the results. Have a look at the below-given steps. Compare the angles A and B with the given expression, sin 60º + sin 30º. Here, A = 60º, B = 30º. Solving using the expansion of the formula sin A + sin B, given as, sin A + sin B = 2 sin ½ A + B cos ½ A - B, we get, Sin 60º + Sin 30º = 2 sin ½ 60º + 30º cos ½ 60º - 30º = 2 sin 45º cos 15º = 2 1/√2 √3 + 1/2√2 = √3 + 1/2. Also, we know that sin 60º + sin 30º = √3/2 + 1/2 = √3 + 1/2 from trig table. Hence, the result is verified. ☛ Related Topics Trigonometric Chart Trigonometric Functions sin cos tan Law of Sines Let us have a look at a few examples to understand the concept of sin A + sin B better. FAQs on Sin A + Sin B What is the Value of Sin A Plus Sin B? Sin A plus Sin B is an identity or trigonometric formula, used in representing the sum of sine of angles A and B, Sin A + Sin B in the product form using the compound angles A + B and A - B. Here, A and B are angles. What is the Formula of SinA + SinB? SinA + SinB formula, for two angles A and B, can be given as sinA + sinB = 2 sin ½ A + B cos ½ A - B. Here, A + B and A - B are compound angles. What is the Product Form of Sin A + Sin B in Trigonometry? The product form of sin A + sin b formula is given as, sin A + sin B = 2 sin ½ A + B cos ½ A - B, where A and B are any given angles. How to Prove the Expansion of SinA + SinB Formula? The expansion of sin A + sin B, given as sinA + sinB = 2 sin ½ A + B cos ½ A - B, can be proved using the 2 sin α cos β product identity in trigonometry. Click here to check the detailed proof of the formula. How to Use Sin A + Sin B Formula? To use sin A + sin B identity in a given expression, compare the sin a + sin b formula, sin A + sin B = 2 sin ½ A + B cos ½ A - B with given expression and substitute the values of angles A and B. What is the Application of SinA + SinB Formula? SinA + SinB formula can be applied to represent the sum of sine of angles A and B in the product form of sine of A + B and cosine of A - B, using the formula, sin A + sin B = 2 sin ½ A + B cos ½ A - B.
Hallo Gangs Apa kabar? Semoga kita semua selalu ada dalam lindungan-Nya. Amin. Pada kesempatan kali ini kita akan belajar tentang rumus sinus, kosinus dan tangen. Kita tidak akan sekedar mengetahui rumus-rumusnya namun kita juga akan melatih kemampuan otak kita dengan contoh-contoh soal yang akan di berikan. Okeee Gengs langsung saja yaaa Sebelum kita melangkah pada latihan soal, akan diberikan beberapa rumus yang akan kita gunakan untuk menjawab soal-soal. Perhatikan aturan-aturan berikut ini Aturan Sinus Aturan Cosinus Aturan trigonometri pada segitiga Nahhhhhh sekarang kita akan masuk pada latihan soal!!! CONTOH 1 Soal Pada △ABC diketahui bahwa sudut A = 30°, a = 6 dan b = 10. Tentukanlah nilai dari Sin B. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Rumus di atas bisa kita tuliskan ke dalam a sin B = b sin A 6 sin B = 10 sin 30° 6 sin B = 10 x ½ sin B = 5/6 CONTOH 2 Soal Pada segitiga PQR diketahui besar sudut P = 60°, sudut R = 45° dan panjang p = 8√3. Tentukanlah panjang sisi r. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut p sin R = r sin P 8√3 sin 45° = r sin 60° 8√3 x 1/2√2 = r 1/2√3 4√6 = r x 1/2√3 r = 4√6 ÷ ½√3 = 8√2 CONTOH 3 Soal Apabila diketahi △ABC dimana sudut A = 75°, sudut B = 60° dan panjang sisi c = 20. Tentukan panjang sisi b. Jawab Sebelumnya, apabila kita perhatikan baik-baik soal di atas dimana sudut yang diketahui adalah A dan B sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang ditannyaka. Dari penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut C-nya. besar sudut C = 180° – [75°+ 60°] = 45° Nahhhhhh setelah kita tentukan besar sudut C maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 20 sin 60° b ½ √2 = 20. ½√3 b ½ √2 = 10 √3 b = 10 √3 ÷ ½ √2 = 10√6 CONTOH 4 Soal Apabila diketahui suatu △ABC memiliki panjang sisi a = 12, besar sudut A = 60° dan sudut C = 45°, maka berapakah panjang sisi c? Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin C = c sin A 12 sin 45° = c sin 60° 12 x ½√2 = c x ½√3 6√2 = c x ½√3 c = 6√2 ÷ ½√3 = 4√6 CONTOH 5 Soal Jika diketahui suatu △ABC memiliki panjang sisi c = 12√2cm, besar sudut A = 105° dan besar sudut C = 45°, maka berapakah panjang sisi b? Jawab Pada soal nomor 5 ini kasusnya sama dengan soal nomo 3 dimana sudut yang diketahui adalah A dan C sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut B-nya, sebagai berikut ini. besar sudut B = 180° – [105° + 45°] = 30° Nahhhhhh setelah kita tentukan besar sudut B maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 12√2 sin 60° b x ½√2 = 12√2 x ½√3 b x ½√2 = 6√6 b = 12√3 CONTOH 6 Soal Tentukan panjang sisi b apabila diketahui besar sudut A = 60°, besar sudut B = 45° dan panjang sisi a = 6√3 pada △ABC. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 6√3 x sin 45° = b sin 60° 6√3 x ½√2 = b x ½√3 3√6 = b x ½√3 b = 3√6 ÷ ½√3 = 6√2 CONTOH 7 Soal Tentukan △ABC dengan panjang sisi a = 4, b = 10 dan sin B = ½. Berapakah nilai dari cos A. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 4 ½ = 10 sin A 2 = 10 sin A sin A = 2/10 = ⅕ karena yang ditanyakan adalah cos A maka kita akan mencarinya dengan berpatokan pada nilai sin A yang telah kita peroleh, sebagai berikut cos² A = 1 – sin² A = 1 – ⅕² = 24/25 cos A = ⅖√6 CONTOH 8 Soal Sebuah △ABC memiliki panjang c = 4 , a = 6 dan b = 8 . Tentukan nilai dari cos C. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos C = [a² + b² – c² ] ÷ [ = [6² + 8² – 4² ] ÷ = [36 + 64 – 16 ] ÷ 96 = 84 ÷ 96 CONTOH 9 Soal Sebuah △ABC memiliki panjang sisi a = 3, c = 8 dan besar sudut B = 60°. Tentukan panjang sisi b. Jawab b² = a² + c² – 2ac cos B = 3² + 8² – cos 60° = 9 + 64 – 48 ½ = 73 -24 = 49 Sehingga b = √49 = 7 CONTOH 10 Soal Diketahui △ABC dengan panjang sisi c = 9, b = 8cm dan a = 7. Tentukan nilai dari sin A. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos A x 2bc = b² + c² – a² cos A x [ = 9² + 8² – 7² 144 cos A = 81 + 64 – 49 cos A = 96/144 = 2/3 karena yang ditanyakan adalah sin A maka kita akan mencarinya dengan berpatokan pada nilai cos A yang telah kita peroleh, sebagai berikut sin² A = 1 – cos²A = 1 – 2/3² = 1 – 4-/9 = 5/9 sin A = √5/9 = ⅓√5 CONTOH 11 Soal Pada suatu segitiga ABC diketahui panjang sisi a = 3, b = 5 dan c = 7. Tentukanlah nilai tan C. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C 7² = 3² + 5² – cos C 49 = 9 + 25 – 30 cos C 30 cos C = -15 cos C = – 15/30 = -1/2 Sehingga C = 120 Selanjutnya, kita tentukan nilai tan C. tan C = tan 120° = tan 180° – 60° = – tan 60° = – √3 CONTOH 12 Soal Diketahui sebuah segitiga ABC dengan panjang sisi a = 6, b = 8 dan besar sudut C = 60°. Tentukanlah panjang sisi c. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C c² = 6² + 8² – 60° c² = 36 + 64 – 96 . ½ c² = 100 – 48 = 52 Sehingga akan diperoleh sebagai berikut c = √52 = 2√13 CONTOH 13 Soal Pada △ABC diketahui besar sudut C = 60°, panjang sisi c = 12 dan panjang sisi a = 15. Tentukan luas segitiga ABC. Jawab Dengan menggunakan aturan triginimetri pada segitiga, diperoleh sebagai berikut. Luas △ABC = ½ x c x a x sin C = ½ x 12 x 15 x sin 60° = ½ x 12 x 15 x ½√3 = 45√3 CONTOH 14 Soal Pada △ABC diketahui a = 2√7cm, b = 4cm dan c = 6cm. Maka tentukan nilai sin A. Jawab Dengan menggunakan aturan cosinus, diperoleh hasil sebagai berikut cos A x 2bc = b² + c² – a² cos A x = 4² + 6² – 2√7² 48 cos A = 16 + 36 – 28 = 24 cos A =24/28 = ½ maka didapat besar sudut A = 60° Sehingga sin 60° = ½√3 CONTOH 15 Soal Misalkan sebuah segitiga ABC sama sisi memiliki panjang 8, maka Berapakah luas segitiga tersebut. Jawab Kita misalkan bahwa segitiga sama sisi tersebut memiliki besar sudut yang sama yaitu 45° dan semua sisi memiliki panjang yang sama sehingga luasnya didapat seperti ini Luas △ABC = ½ x s x s x sin α = ½ x s x s x sin 45 = ½ x 12 x 12 x ½√2 = 36√2 CONTOH 16 Soal Jika diketahui △ABC memiliki besar sudut A = 65°, B = 55°, panjang sisi b = 6 dan panjang sisi a = 8, maka tentukan luas segitiga tersebut adalah Jawab Karena sin C-nya belum diketahui, maka kita cari dahulu nilai sin C. Besar sudut C = 180° – [65° + 55°] = 60° Sesudah mendapatkan nilai sin C maka selanjutnya kita mengerjakan berdasarkan aturan segitiga pada trigonometri sebagai berikut Luas △ABC = ½ x a x b x sin 60° = ½ x 6 x 8 x ½√3 = 12√3 Demikian cintoh-contoh soalnya. Semoga bermanfaat
Demonstrar fórmulas e teoremas é fundamental para que o aluno compreenda que a matemática é uma ciência assim como outras que apresenta seus resultados mediante a observação e comprovação dos fatos, utilizando o conhecimento prévio e conceitos já definidos. Além disso, as demonstrações mostram aos educandos o pensamento matemático, a criatividade e a investigação de quem se dedicou ao estudo de tal fato, conseguindo provar as relações existente em cada caso. Serve também para mudar a visão de que o aluno precisa somente saber aplicar a fórmula, contribuindo para que ele passe a gostar de matemática e tenha interesse em adquirir conhecimento nessa área. Veremos uma demonstração da fórmula para cos a – b utilizando o conceito de distância entre dois pontos. Considere quatro pontos pertencentes à circunferência trigonométrica como mostra a figura a seguir Temos que Como sabemos, a circunferência trigonométrica apresenta raio unitário. Assim, os pontos apresentam coordenadas A1, 0; BXb, Yb; CXc, Yc e DXd, Yd. Note que Xb = cos b, Yb = sen b, Xc = cos a – b, Yc = sen a – b, Xd = cos a e Yd = sen a. Observe que a distância entre os pontos B e D é igual à distância entre C e A. Obtemos essa igualdade da congruência entre os triângulos BOD e AOC, pelo caso Lado – Ângulo – Lado. Utilizando a fórmula da distância entre dois pontos, obtemosNão pare agora... Tem mais depois da publicidade ; Substituindo os valores das coordenadas na igualdade acima, obtemos Como Obtemos Ou Como queríamos demonstrar. Veja que se trata de uma demonstração simples, utilizando a distância entre dois pontos, que nada mais é que o Teorema de Pitágoras e conceitos básicos de trigonometria no ciclo. Dessa forma, o aluno não fica com a ideia de que o modelo matemático “caiu do céu”, não havendo explicação para tal fato, aceitando a veracidade da fórmula como uma verdade absoluta, imposta. Por Marcelo Rigonatto Especialista em Estatística e Modelagem Matemática Equipe Brasil Escola
Rumus-Rumus Trigonometri – Dulu kami pernah membuat postingan tentang rumus trigonometri SMA seperti trigonometri sudut ganda, selisih sudut, dan penjumlahan sudut. Kali ini kita akan belajar mengingat kembali apa itu trigonometri dan rumus aturan apa saja yang ada di dalamnya. Buat sebagian sobat hitung di rumah, trigonometri mungkin jadi materi dalam kategori susah dan ngga begitu disukai. Ah, kadang kita tida begitu serius PDKTnya, sehingga kita ngga begitu terasa rasa sukanya. Buat menambah PDKT kita tidak ada salahnya kita simak takjim sajian berikut. Apa itu Trigonometri Kalau sobat ditanya apa itu trigonometri kira-kira mau menjawab apa hayooo. Sobat, ternyata trigonometri berasal dari bahasa yunani “trigonon” yang bermakna segitiga dan “metron” yang berarti pengukuran. Trigonometri muncul di awal abad ke-3 masehi. Ia adalah salah satu cabang dari ilmu hitung matematika yang mempelajari segitiga meliputi semua aturan dalam penghitungan yang melibatkan sisi dan sudut dalam segitiga. Trigonometri terdiri dari sinus sin, cosinus cos, tangen tan, cotangen cot, secan sec, dan cosecan cosec. Untuk lebih memahami definisi trigonometri yuk simak gambar segitiga di bawah ini. Rumus Trigonometri Keterangan Sin α = b/c sisi depan dibagi sisi miring Cos α = a/c sisi samping dibagi sisi miring Tan α = b/a sisi depan dibagi sisi samping Cot α = a/b sisi samping dibagi sisi depan kebalikan dari tangen Sec α = c/a sisi miring dibagi sisi samping kebalikan dari cos Cosec α = c/b sisi miring dibagi sisi depan kebalikan dari sin Nilai Trigonometri Sudut-Sudut Istimewa Dalam trigonometri ada lima kaya poweranger sudut yang disebut sebagai sudut istimewa yaitu 0o, 30o, 45o, 60o, dan 60o. Penting bagi kita untuk mengetahui besarnya nilai trigonometri sudut-sudut tersebut karena rajin sekali muncul dalam soal ulangan atau ujian nasional. Rangkuman lengkap tentang nilai trigonometri dari sudut tersebut bisa di baca di tabel trigonometri sudut istimewa. Rumus-Rumus Identitas Trigonometri Nah ada istilah baru lagi ni, “identitas trigonometri”. Apa coba itu? Identitas trigonometri adalah sifat unik yang hanya dimiliki oleh trigonometri seperti sifat anomali pada air. Sifat itu hanya miliknya. Kalau dikelompokkan, sifat identitas ini bisa di bagi menjadi 3 kelas. Kelas yang pertama adalah identitas pebandingan, kelas kedua identitas kebalikan, dan yang terakhir identitas phytagoras. Berikur rumus trigonometri tersebut Relasi Sudut dalam Trigonometri Dalam trigonometri, ada relasi atar sudut-sudut. Sudut-sudut di kuadran II 90o-180o, kuadran III 180o-270o dan kuadran IV 270o-360o punya relasi dengan sudut-sudut di kuadran I 0o-90o. Berikut rumus-rumus sudut berelasi dalam trigonometri berikut trik untuk menghapalnya. 1. 180o – α –> Kuadran II sin 180o – α = sin α cos 180o – α = -cosα tan 180o – α = sin α 6. 90o – α –> Kuadran I sin 90o – α = cos α cos 90o – α = sin α tan 90o – α = cot α 2. 180o + α –> Kuadran III sin 180o + α = -sin α cos 180o + α = -cosα tan 180o + α = sin α 7. 90o + α –> Kuadran II sin 90o + α = cos α cos 90o + α = -sin α tan 90o + α = -cot α 3. 360o – α –> Kuadran IV sin 360o – α = -sin α cos 360o – α = cosα tan 360o – α = -sin α 8. 270o – α –> Kuadran III sin 270o – α = -cos α cos 270o – α = -sin α tan 270o – α = cot α 4. 360o + α –> Kuadran I sin 360o + α = sin α cos 360o + α = cosα tan 360o + α = sin α 9. 270o + α –> Kuadran IV sin 270o + α = -cos α cos 270o + α = sin α tan 270o + α = -cot α 5. untuk sudut -α –> Kuadran IV sin -α = -sin α cos -α = cosα tan -α = -sin α Rumus Cepat Rumus Cepat Pola lihat di kanan tanda = Sin → SinCos → CosTan → Tan Pola lihat di kanan tanda = Sin → CosCos → SinTan → Cot Penentuan +/- dilihat dari Kuadran, aturannya yang POSITIFKuadran I = All semuaKuadran II = hanya SIN Kuadran III = hanya TAN Kuadran IV = hanya COS sobat bisa mengingatnya ALL SIN TAN COS Jadi yang perlu sobat lakukan adalah menghafal pola dari sudut istimewa yang kelipatan 180o dan 90o kemudian tentukan hasilnya apakah positif atau negatif dengan menggunkan aturan ALL SIN TAN COS. Contoh soalnya seperti berikut Sobat ditanya berapa nilai sin 120o? sobat dapat menggunakan trik rumus trigonometri di atas. Cara I ingat, 120 = 90 + 30, jadi sin 120o dapat dihitung dengan Sin 120o = Sin 90o + 30o = Cos 30o nilainya positif karena soalnya adalah sin 120o, di kuadran 2, maka hasilnya positif Cos 30o = ½ √3 Cara II sobat bisa juga menggunakan rumus lain untuk soal trigonometri tersebut, 120o nilanya juga sama seperti 180o-80o. Sin 120o = Sin 180o – 60o = sin 60o = ½ √3 sama kan sobat hasilnya, hehehe 😀 Demikian sobat sajian kami tentang rumus trigonometri. Semoga bermanfaat. Untuk materi trigonometeri yang lain seperti grafik dan fungsi trigonometri dan pengukuran sudut akan kita sambung di postingan berikutnya. Selamat belajar. Buat orang tuamu bangga… 😀
rumus sin a cos b